

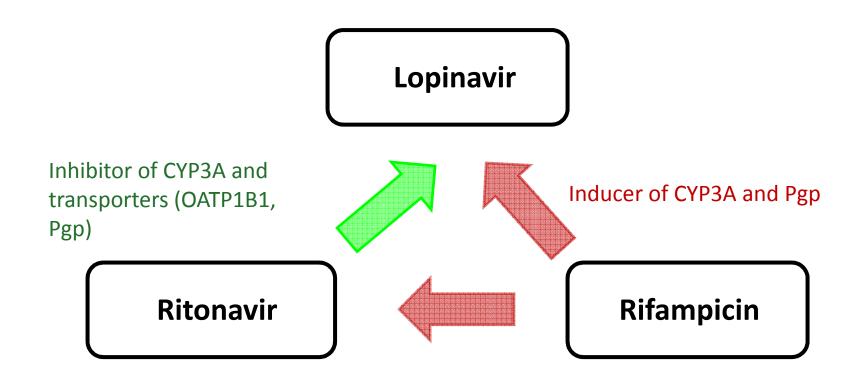
Population Pharmacokinetics of Lopinavir and Ritonavir in Combination with Rifampicin-based Antitubercular Treatment in HIV-infected Children

Chao Zhang¹, Paolo Denti¹, Jan-Stefan van der Walt^{1,2}, Ulrika SH Simonsson², Gary Maartens¹, Mats O.Karlsson², Helen McIlleron¹

IIPPSAI A

FRSU

- ¹ Division of Clinical Pharmacology, Department of Medicine, University of Cape Town
- ² Department of Pharmaceutical Biosciences, Uppsala University

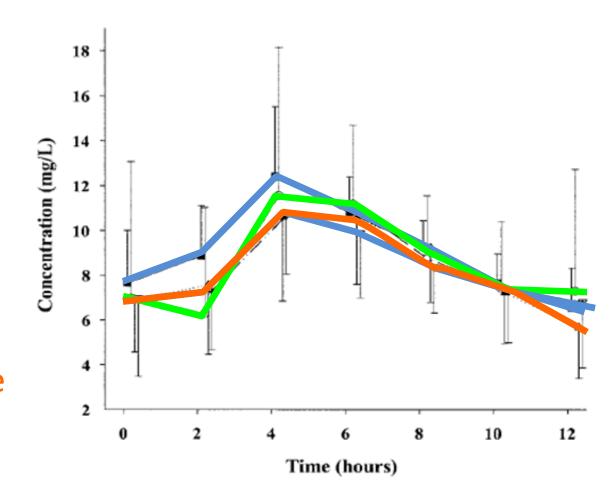

Background

- Tuberculosis (TB) is one of the most common opportunistic infection in HIV patients. Up to a third of all the new TB cases in South Africa are dually infected with HIV.
- Co-administration of antiretroviral and antitubercular therapy is frequently indicated.
- Lopinavir/ritonavir (LPV/RTV) is the first-line antiretroviral therapy for young children in South Africa.

(The South African Antiretroviral Treatment Guideline 2010).

Complicated drug-drug interaction

The concomitant administration of RIF with lopinavir/ritonavir (Kaletra[®]) reduces the bioavailability and Cmin of lopinavir by approximately 75% and 99% respectively.


La Porte CJL, et al. Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampicin in healthy volunteers. Antimicrob Agents Chemother. 2004;48:1553-1560.

Two strategies

1. Super-boosting: more RTV (LPV:RTV=4:4)

2. Doubling the dose (LPV:RTV=8:2)

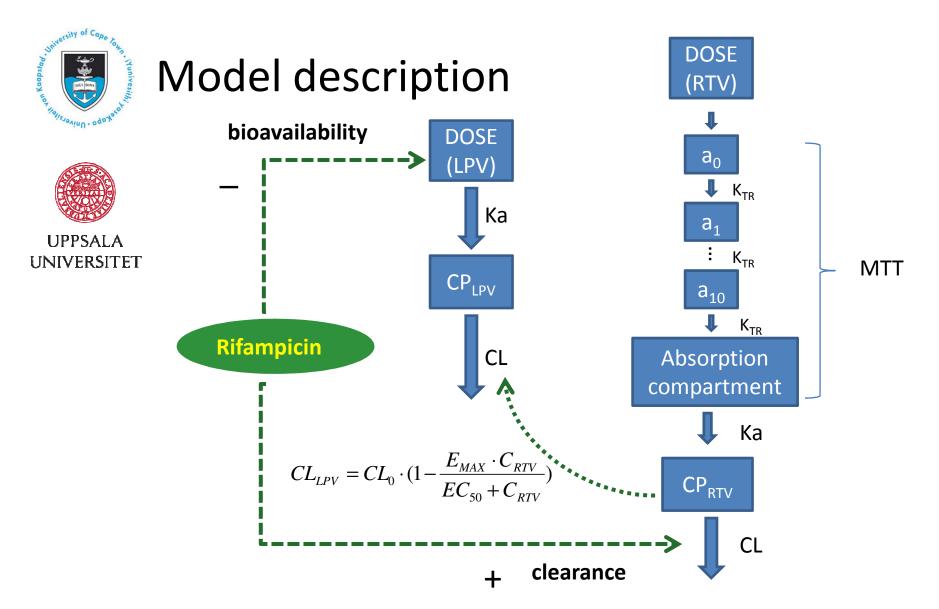
La Porte CJL, et al. Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampicin in healthy volunteers. Antimicrob Agents Chemother. 2004;48:1553-1560.

Objectives

- Develop an integrated population PK model describing the interactions of LPV, RTV and rifampicin (RIF) in children.
- Evaluate the effect of patient and treatment factors (age, BSA, weight, gender, haemoglobin, albumin, ALT) on LPV and RTV PK in children.
- Suggest dose recommendations in children receiving LPV/RTV and RIF-based TB therapy concurrently.

Study Design

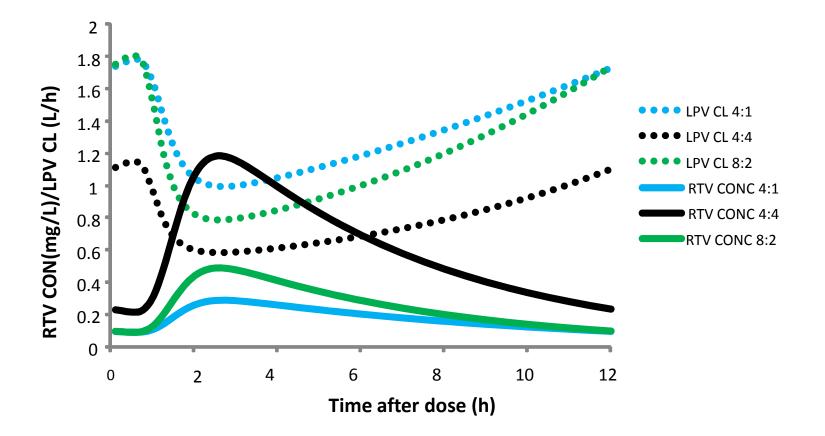
Oral solution of LPV/RTV=4:1 + oral solution RTV, when necessary


	HIV patients	HIV/TB pa	HIV/TB patients	
	Control group	During RIF to	After RIF treatment	
Dose ratio	Normal dose	Super-boosted dose	Double dose	Normal dose
(LPV:RTV)	4:1	4:4	8:2	4:1
Number of subjects	39	15	20	11
Number of samples	216	120	95	88

4~8 samples from each patient, up to 12h after dose

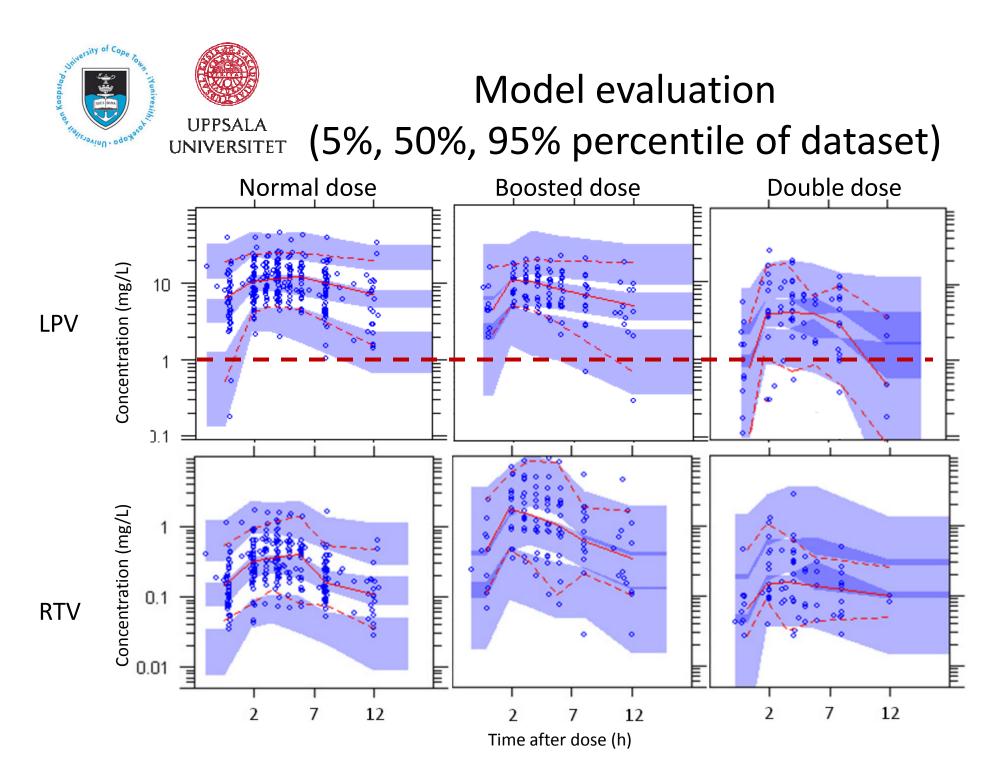
Population

Demography	Median	Range
Age (month)	21	6 months - 4.5 years
Body weight (kg)	10.2	5 – 17
Gender (M/F)	34/40	
Height (cm)	79	58-103
BSA (m²)	0.48	0.28-0.69
Haemoglobin (g/L)	10.7	5.7-29.7
Albumin (g/L)	38	29-47
ALT (U·L⁻¹)	19	9-43



Allometric scaling of weight on CL and V for both drugs

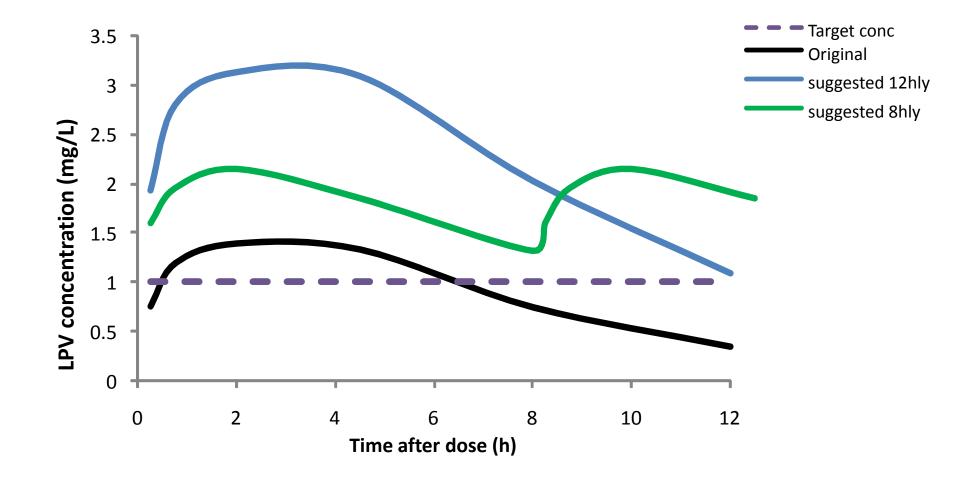
$$CL = CL_0 \cdot \left(\frac{WT}{10kg}\right)^{\frac{3}{4}}$$
 $V = V \cdot \left(\frac{WT}{10kg}\right)$


Dynamic effect of concentration of RTV on clearance of LPV in the typical patient (10kg, 21 months)

Parameter estimates

	LPV Parameters	Typical value	RSE* (%)	RT	TV Parameters	Typical value	RSE* (%)
	CL/F (L/h)	4.27	11.6	CL/F	no TB and after TB	12.7	9.8
	V/F (L)	11.7	11.4	(L/h)	with TB treatment	19	12.7
	Ka (h ⁻¹)	0.744	22.4		V/F (L)	105	11.9
F	boosted dose	44.7%	10.7		Ka (h ⁻¹)	2.31	40.3
	double dose	21%	19.0	MTT (h)		1.28	17.3
	IIV V	56.6%	33.4		IIV CL	72.8%	14.9
	IOV Ka	76.2%	49.9		IOV CL	41.6%	30.1
	IOV F1	51.8%	32.1		IIV V	43.3%	25
				IOV MTT		31.1%	26.3
	Emax	0.9(fix)			ΙΟΥ ΚΑ	98.1%	36.3
	EC50 (mg/L)	0.0497	23.0		ΔOFV = -95.459	*results from	250 bootstrap

Simulation for dose optimization during TB treatment


Target: **95%** of patients with **C**_{min}**>1 mg/L**

Current median dose (median body weight = 8.7 kg) : Normal ratio (4:1) 23 mg/kg Boosted ratio (1:1) 14 mg/kg

Body weight	LPV:R	LPV:RTV=1:1	
	12 hrly LPV dose (mg/kg)	8 hrly LPV dose (mg/kg)	12 hrly LPV dose (mg/kg)
4-6 kg	65	30	20
6-8 kg	50	25	17
8-12 kg	40	22	15
12-18 kg	35	18	12

5% of LPV concentrations in different doses with RIF (LPV:RTV=4:1)

Summary

- During RIF-based antitubercular treatment the relative oral bioavailability of LPV
 - was reduced by 79% with LPV/RTV = 8:2.
 - was approximately doubled with LPV/RTV = 4:4
- The effect of RTV concentrations on LPV CL/F was best described with a sigmoidal Emax model.
- Smaller children receiving RIF-based antitubercular treatment require higher mg/kg doses of LPV/RTV (in 4:1 or 1:1 ratio) than larger children.

Acknowledgements

- Clinicians and study site staff at Tygerberg and Red Cross Children's Hospitals in Cape Town and Harriet Shezi Clinic, Chris Hani Baragwanath Hospital, Soweto
- Prof. Peter Smith, Dr Yuan Ren, Alicia Evans and the laboratory at Division of Clinical Pharmacology
- Funding
 Wellcome Trust (PKPDia)
 EDCTP, SA Dept. Health